Regularization for Deep Learning: A Taxonomy

نویسندگان

  • Jan Kukacka
  • Vladimir Golkov
  • Daniel Cremers
چکیده

Regularization is one of the crucial ingredients of deep learning, yet the term regularization has various definitions, and regularization methods are often studied separately from each other. In our work we present a systematic, unifying taxonomy to categorize existing methods. We distinguish methods that affect data, network architectures, error terms, regularization terms, and optimization procedures. We do not provide all details about the listed methods; instead, we present an overview of how the methods can be sorted into meaningful categories and sub-categories. This helps revealing links and fundamental similarities between them. Finally, we include practical recommendations both for users and for developers of new regularization methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularization for Deep Learning: A Taxonomy

Regularization is one of the crucial ingredients of deep learning, yet the term regularization has various definitions, and regularization methods are often studied separately from each other. In our work we present a novel, systematic, unifying taxonomy to categorize existing methods. We distinguish methods that affect data, network architectures, error terms, regularization terms, and optimiz...

متن کامل

Multi-category and Taxonomy Learning : A Regularization Approach

In this work we discuss a regularization framework to solve multi-category classification when the classes are described by an underlying class taxonomy. In particular we discuss how to learn the class taxonomy while learning a multi-category classifier.

متن کامل

Regularization Predicts While Discovering Taxonomy

In this work we discuss a regularization framework to solve multi-category when the classes are described by an underlying class taxonomy. In particular we discuss how to learn the class taxonomy while learning a multi-category classifier.

متن کامل

Retrieval Term Prediction Using Deep Learning Methods

This paper presents methods to predict retrieval terms from relevant/surrounding words or descriptive texts in Japanese by using deep learning methods, which are implemented with stacked denoising autoencoders (SdA), as well as deep belief networks (DBN). To determine the effectiveness of using DBN and SdA for this task, we compare them with conventional machine learning methods, i.e., multi-la...

متن کامل

Clustering with Deep Learning: Taxonomy and New Methods

Clustering is a fundamental machine learning method. The quality of its results is dependent on the data distribution. For this reason, deep neural networks can be used for learning better representations of the data. In this paper, we propose a systematic taxonomy for clustering with deep learning, in addition to a review of methods from the field. Based on our taxonomy, creating new methods i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.10686  شماره 

صفحات  -

تاریخ انتشار 2017